V31E-3066
Investigating spatial and volumetric trends in silicic volcanism along the Yellowstone hotspot track using high-resolution thermomechanical numerical models
Wednesday, 16 December 2015
Poster Hall (Moscone South)
Dylan Colon, University of Oregon, Eugene, OR, United States, Ilya N Bindeman, University of Oregon, Department of Geological Sciences, Eugene, OR, United States and Taras Gerya, ETH Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
Abstract:
Roughly 2 Ma gaps exist between the Picabo and Heise (from ~8.4 to 6.6Ma) and the Heise and Yellowstone (4.40 to 2.1 Ma) centers along the Yellowstone hotspot track, each of which experienced magmatic activity for several million years. We employ high-resolution magmatic-thermomechanical models of the interaction between a mantle plume and thick continental crust to investigate the causes of the spatial and temporal jumps that occur between these eruptive centers, using a stress implementation of magmatic processes, nonlinear temperature-dependent melting, and progressive depletion the rocks from which magmas are extracted. We investigate two possible mechanisms of these jumps in active centers. First, the spacing between eruptive centers is a function of the longevity of amagma conduit in beneath each eruptive center, which must be abandoned when the crust moves too far away from the center of the hotspot, with the distance traveled by the plate in this time determining the spacing between eruptive centers. Alternatively, the cessation of activity at a given eruptive center is controlled by the formation of geochemically depleted “dead zones” which force any new silicic volcanism to occur in a new area of less depleted crust, with the spacing between centers controlled by the size of these dead zones. By varying the speed of the crust over the hotspot, the thickness and composition of the crust, we can determine the relative importance of these two processes for volcanism along the Yellowstone hotspot track has likely changed over time, with implications for changes in average eruptive volumes and repose times between large eruptions over the last 12 Ma. Early results suggest that heating of the crust causes areas of melt accumulation to move upward with time before resetting to a deeper level as the crust moves over the hotspot, a possible additional source of discrete behavior along the hotspot track. We check our results using existing geochemical constraints.