H33D-1639
Snow Water Equivalent Retrieval Using Multitemporal COSMO Skymed X-Band SAR Images To Inform Water Systems Operation

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Simona Denaro1, Umberto Del Gobbo2, Andrea Castelletti1, Stefano Tebaldini2 and Andrea Monti Guarnieri2, (1)Politecnico di Milano, Milano, 20133, Italy, (2)Politecnico di Milano, Milano, Italy
Abstract:
In this work, we explore the use of exogenous snow-related information for enhancing the operation of water facilities in snow dominated watersheds. Traditionally, such information is assimilated into short-to-medium term streamflow forecasts, which are then used to inform water systems operation. Here, we adopt an alternative model-free approach, where the policy is directly conditioned upon a small set of selected observational data able to surrogate the snow-pack dynamics. In snow-fed water systems, the Snow Water Equivalent (SWE) stored in the basin often represents the largest contribution to the future season streamflow. The SWE estimation process is challenged by the high temporal and spatial variability of snow-pack and snow properties. Traditional retrieval methods, based on few ground sensors and optical satellites, often fail at representing the spatial diversity of snow conditions over large basins and at producing continuous (gap-free) data at the high sample frequency (e.g. daily) required to optimally control water systems. Against this background, SWE estimates from remote sensed radar products stand out, being able to acquire spatial information with no dependence on cloud coverage. In this work, we propose a technique for retrieving SWE estimates from Synthetic Aperture Radar (SAR) Cosmo SkyMed X-band images: a regression model, calibrated on ground SWE measurements, is implemented on dry snow maps obtained through a multi-temporal approach. The unprecedented spatial scale of this application is novel w.r.t. state of the art radar analysis conducted on limited spatial domains. The operational value of the SAR retrieved SWE estimates is evaluated based on ISA, a recently developed information selection and assessment framework. The method is demonstrated on a snow-rain fed river basin in the Italian Alps. Preliminary results show SAR images have a good potential for monitoring snow conditions and for improving water management operations.