P31A-2039
A Hydrothermally Altered, Mn-incrusted Marine Sediment as an Analogue for Martian Deposits?

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Christoph Gross1, Janice L Bishop2, Alessandro Maturilli3, Mario D'Amore3 and Jorn Helbert3, (1)Free University of Berlin, Berlin, Germany, (2)SETI Institute Mountain View, Mountain View, CA, United States, (3)German Aerospace Center DLR Berlin, Berlin, Germany
Abstract:
The investigated sample was dredged in the Kahouanne basin during the research cruise SO-154 (RV Sonne) in the Lesser Antilles Island Arc between the islands of Guadeloupe and Montserrat (Halbach et al., 2002). The Kahouanne basin represents the southern extension of the large Kallinago intra-arc basin and has a length of approximately 40 km and a width of 15 km. The western margin of the basin is dominated by the Shoe-Rock-Spur fault zone. Previous research cruises found indications for low-temperature hydrothermal fluid-flow along the fault zone (Polyak et al., 1992). The sample 18CD is a sediment with grain- sizes of 0.25-0.63 mm, cemented by a Nontronite-Manganese matrix, partly displaying layer-like texture. The groundmass is composed of feldspar, pyroxenes, glass- and rhyodacitic fragments, as well as pelagic carbonates in clasts of different size. Often, ignimbritic textures are visible, pointing to volcanic ejection products. A detailed analysis was carried out on the sample 18CD, starting with the preparation of thin-sections, followed by XRD, XRF, ICP-OES, AAS, SEM (EDX-ZAF). In addition, we analyzed the sample with bi-directional reflectance and emission measurements conducted in the Planetary Emissivity Laboratory (PEL) at the German Aerospace Center (DLR), as well as visible/near-infrared reflectance using an ASD spectrometer at the SETI Institute. The results of the spectroscopic measurements show striking similarities to Martian nontronites, detected by orbiting instruments. Furthermore, the in-depth analyses of the hydrothermally altered sediment reveals reasonable processes and products for past and present Mars.

References: Halbach et al., 2002. InterRidgeNews 11(1), 18-22; Polyak et al., 1992. J. Volcanol. Geotherm. Res., 54, 81-105.