B43C-0579
Evaluation of unmanned aerial vehicle (UAV) imagery to model vegetation heights in Hulun Buir grassland ecosystem

Thursday, 17 December 2015
Poster Hall (Moscone South)
Dongliang Wang, CAAS Chinese Academy of Agricultural Sciences, Beijing, China
Abstract:
Vertical vegetation structure in grassland ecosystem is needed to assess grassland health and monitor available forage for livestock and wildlife habitat. Traditional ground-based field methods for measuring vegetation heights are time consuming. Most emerging airborne remote sensing techniques capable of measuring surface and vegetation height (e.g., LIDAR) are too expensive to apply at broad scales. Aerial or spaceborne stereo imagery has the cost advantage for mapping height of tall vegetation, such as forest. However, the accuracy and uncertainty of using stereo imagery for modeling heights of short vegetation, such as grass (generally lower than 50cm) needs to be investigated. In this study, 2.5-cm resolution UAV stereo imagery are used to model vegetation heights in Hulun Buir grassland ecosystem. Strong correlations were observed (r > 0.9) between vegetation heights derived from UAV stereo imagery and those field-measured ones at individual and plot level. However, vegetation heights tended to be underestimated in the imagery especially for those areas with high vegetation coverage. The strong correlations between field-collected vegetation heights and metrics derived from UAV stereo imagery suggest that UAV stereo imagery can be used to estimate short vegetation heights such as those in grassland ecosystem. Future work will be needed to verify the extensibility of the methods to other sites and vegetation types.