B31C-0566
Increases in Growing Season Length and Changes in Precipitation at Six Different Arctic and Subarctic Ecosystems from 1906-Present
Wednesday, 16 December 2015
Poster Hall (Moscone South)
Lauren E Culler, Rebecca Finger, Ellen Plane, Matt Ayres and Ross A Virginia, Dartmouth College, Hanover, NH, United States
Abstract:
Ecological dynamics across the Arctic are responding to rapid changes in climate. As a whole, the Arctic has warmed at approximately twice the rate of the rest of the world, but changes in temperature and precipitation experienced at regional and local scales are most important for coupled human-natural systems. In addition, biologically-relevant climate indices are necessary for quantifying ecological responses of terrestrial and aquatic systems to varying climate. We compared climatic changes at six different Arctic and sub-Arctic locations, including two in Greenland (Kangerlussuaq, Sisimiut), one in Sweden (Abisko), and three in Alaska (Barrow, Nome, Fairbanks). We amassed weather data (daily temperature and precipitation), dating as far back as 1906, from public-access databases and used these data to calculate indices such as length of growing season, growing season degree days (GDD), and growing season precipitation. Annual GDD increased at all locations (average of 13% increase in GDD since 1980), but especially in western Greenland (16 and 37% in Kangerlussuaq and Sisimiut, respectively). Changes in growing season precipitation were more variable, with only Barrow, AK and Abisko, Sweden experiencing increased precipitation. All other sites experienced stable or slightly declining precipitation. Increasing temperatures and relatively stable precipitation translates to increased evapotranspiration potential, which influences soil moisture, lake depth, vegetation, carbon emissions, and fire susceptibility. Understanding local and regional trends in temperature and precipitation can help explain observed phenological changes and other processes at population, community, and ecosystem levels. In addition, identification of locations most susceptible to future change will allow scientists to closely monitor their ecological dynamics, anticipate changes in coupled human-natural systems, and consider adaptation plans for the most rapidly changing systems.