Satellite Measurements of Lava Extrusion Rate at Volcán Reventador, Ecuador

Wednesday, 16 December 2015: 11:50
2002 (Moscone West)
David W D Arnold1, Juliet Biggs1, Susanna K Ebmeier2, Silvia Vallejo Vargas3 and María Fernanda Naranjo3, (1)University of Bristol, School of Earth Sciences, Bristol, United Kingdom, (2)University of Bristol, COMET, School of Earth Sciences, Bristol, United Kingdom, (3)Instituto Geofisico EPN - Ecuador, Quito, Ecuador
The extrusion rate of lava at active volcanoes provides a principle control on the style of eruptive behavior and the extent of lava flows, while also providing information about magma supply to the volcano. Measurements of extrusion rate at active volcanoes are therefore important for assessing hazard, and improving understanding of volcanic systems.

Volcán Reventador is an asymmetric stratovolcano in the Cordillera Real of Ecuador. The largest historically observed eruption at Reventador in 2002 has been followed by several periods of eruptive activity. Eruptions are characterised by effusion of andesitic to basaltic-andesitic lava flows, and Vulcanian explosions. The ongoing eruption at Reventador therefor provides an excellent target for investigating the link between effusion rate, explosivity, and lava flow behaviour. Satellite InSAR provides regular observations of the volcano, even during night or periods of cloud cover.

We use a dataset of Radarsat-2 and TanDEM-X imagery, with intervals of 11 to 192 days, over the period 2011 to 2014 to measure the extent, thickness and volume of new lava flows at Reventador. We use radar amplitude and inteferometric coherence to map 25 individual lava flows, as well as pyroclastic deposits and changes in lava dome morphology. We observe 43 Mm3 of deposits over a three year period, giving an average effusion rate of 0.5 m3s-1. We do not observe any ground deformation due to magmatic sources at Reventador, therefore variations in lava effusion rate can be interpreted as changes in the magma supply to the volcano.

We investigate the link between variations in effusion rate and the length, area, thickness, and aspect ratio of lava flows, and the explosive-effusive transition. We also characterise the relationship between lava flow age, thickness, and subsidence rate.