PP13A-2272
Organic geochemical characterization of the Lower-Middle Triassic sedimentary rocks from south China

Monday, 14 December 2015
Poster Hall (Moscone South)
Ryosuke Saito, Tohoku University, Sendai, Japan
Abstract:
The most devastated environments and depleted biodiversity on Earth occurred during the Early Triassic epoch following the latest Permian mass extinction. Complete biotic recovery, characterized by a return to pre-extinction diversity levels, took an extraordinarily long time (ca. 5 x 106 yr), probably because harsh conditions developed repeatedly during the Early Triassic. Newly obtained organic geochemistry data from south China area, indicated a variety of biotic (eukaryotic algae, cyanobacteria, bacteria, and archaea) and environmental fluctuations (redox) during the Early Triassic. Remarkably, some sedimentary rocks from Lower Triassic strata contain rare biomarkers such as biphytanes and okenane, whch are biomarkers for archaea and purple sulfur bacteria, respectively. This is the first study to describe in detail primary producers, microbes, and redox conditions in the Early–Early Middle Triassic, on the basis of biomarkers such as steranes, 2-methyl hopanes, hopanes, biphytanes, regular isoprenoids, n-alkanes, okenane, chlorobactane, β-carotane, and γ-carotane. The results greatly not only increase our understanding of the recovery processes that occurred following the Permian mass extinction, but also emphasize an effectiveness of organic geochemistry against the Early Triassic.