P23A-2101
Three-dimensional Numerical Simulation of Venus' Cloud-level Convection
Abstract:
Although some observational evidences have suggested the occurrence of convection in the lower part of Venus' cloud layer, its structure remains to be clarified. To date, a few numerical studies have examined the structure of convective motion (Baker et al., 1998, 2000; Imamura et al., 2014), but the model they utilized is two-dimensional. Here we report on the results of our numerical calculations performed in order to investigate possible three-dimensional structure of the convection.We use a convection resolving model developed by Sugiyama et al. (2009), which is used in the simulations of the atmospheric convection of Jupiter (Sugiyama et al., 2011,2014) and Mars (Yamashita et al., submitted). We perform two experiments. The first one, which we call Ext.B, is based on Baker et al. (1998). A constant turbulent mixing coefficient is used in the whole domain, and a constant thermal flux is given at the upper and lower boundaries as a substitute for infrared heating. The second one, which we call Exp.I, is based on Imamura et al. (2014). The sub-grid turbulence process is implemented by Klemp and Wilhelmson (1989), and an infrared heating profile obtained in a radiative-convective equilibrium calculation (Ikeda, 2011) is used. In both experiments, the averaged solar heating profile is used. The spatial resolution is 200 m in the horizontal direction and 125 m in the vertical direction. The domain covers 128km x 128km horizontally and altitudes from 40 km to 60 km.
Obtained structures of convection moderately differ in the two experiments. Although the depth of convection layer is almost the same, the horizontal cell size of Exp.B is larger than that of Exp.I; the cell sizes in Exp.B and Exp.I are about 40 km and 25 km, respectively. The vertical motion in Exp.B is asymmetric; updrafts are widespread and weak (~3m/s), whereas downdrafts are narrow and strong (~10m/s). On the other hand, the vertical motion in Exp.I is nearly symmetric and weaker (~2m/s) compared with those in Exp.B. The difference of convective structure results from the different vertical distributions of implemented infrared heating. Namely, the intense downdrafts in Exp.B are forced by the strong cooling concentrated near the top of convection layer. In Exp.I, the heating is distributed in a thick layer, so that relatively symmetric vertical motion occurs.