B24D-01
Incorporating Excess Ground Ice in the Community Land Model on Projections of Permafrost in a Warming Climate

Tuesday, 15 December 2015: 16:00
2010 (Moscone West)
Hanna Lee, Uni Research, Bergen, Norway
Abstract:
In permafrost soils, ‘excess ice’, also referred to as ground ice, exists in amounts exceeding soil porosity in forms such as ice lenses and wedges. Here, we incorporate a simple representation of excess ice in the Community Land Model (CLM4.5) to investigate how excess ice affects projected permafrost thaw and associated hydrologic responses. We initialize spatially explicit excess ice obtained from the Circum-Arctic Map of Permafrost and Ground-Ice Conditions. The excess ice in the model acts to slightly reduce projected soil warming by about 0.35°C by 2100 in a high greenhouse gas emissions scenario. The presence of excess ice slows permafrost thaw at a given location with about a 10 year delay in permafrost thaw at 3 m depth at most high excess ice locations. The soil moisture response to excess ice melt is transient and depends largely on the timing of thaw with wetter/saturated soil moisture conditions persisting slightly longer due to delayed post-thaw drainage. Based on the model projections of excess ice melt, we can estimate spatially explicit gridcell mean surface subsidence with values ranging up to 0.5 m by 2100 depending on the initial excess ice content and the extent of melt.