OS23A-1982
Dehumidification of Iberia by enhanced summer upwelling

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Pedro M Miranda, Universidade de Lisboa, Lisboa, Portugal
Abstract:
Dehumidification of Iberia by enhanced summer upwelling

Miranda PMA, Costa V, Semedo A

IDL, Faculdade de Ciências, University of Lisbon

A 24-year simulation of the recent Iberian climate, using the WRF model at 9km resolution forced by ERA-Interim reanalysis (1989-2012), is analysed for the decadal evolution of the upwelling forcing coastal wind and for column integrated Precipitable water vapour (PWV). Results indicate that, unlike what was found by Bakun et al. (2009) for the Peruvian region, a statistically significant trend in the upwelling favourable (northerly) wind has been accompanied by a corresponding decrease in PWV, not only inland but also over the coastal waters. Such increase is consistent with a reinforced northerly coastal jet in the maritime boundary layer contributing to atmospheric Ekman pumping of dry continental air into the coastal region. Diagnostics of the prevalence of the Iberian thermal low following Hoinka and Castro (2003) also show a positive trend in its frequency during an extended summer period (April to September). These results are consistent with recent studies indicating an upward trend in the frequency of upwelling in SW Iberia (Alves and Miranda 2013), and may be relevant for climate change applications as an increase in coastal upwelling (Miranda et al 2013) may lead to substantial regional impacts in the subtropics.

Aknowledgements: Study supported by FCT Grant RECI/GEO-MET/0380/2012

Alves JMR, Miranda PMA (2013) Variability of Iberian upwelling implied by ERA-40 and ERA-Interim reanalyses, Tellus A 2013, http://dx.doi.org/10.3402/tellusa.v65i0.19245.

Bakun et al (2010) Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems, Global Change Biology, doi: 10.1111/j.1365-2486.2009.02094.x

Hoinka KP, Castro M (2003) The Iberian Peninsula thermal low. QJRMS, 129, 1491– 1511, doi: 10.1256/qj.01.189.

Miranda et al (2013) Climate change and upwelling: response of Iberian upwelling to atmospheric forcing in a regional climate scenario. Climate Dynamics, doi: 10.1007/s00382-012-1442-9.