B11B-0419
No Memory Effects of Restoration on N2O Exchange above an intensively managed Grassland in Switzerland
Abstract:
Here we present 3 consecutive years of EC flux measurements of N2O, CH4 and CO2) carried out in intensively managed grassland in Switzerland. Our measurements of greenhouse gas (GHG) concentrations were based on a recently developed CW-QCL absorption spectrometer to measure the concentrations of N2O and CH4 and an infrared gas analyzer to measure the concentrations of CO2 and H2O. We investigated the magnitude of trace gas emissions during a year of major disturbance (grassland restoration - including ploughing and fertilization in 2012) and the two following years representing business as usual (up to 6 harvests per year which are followed by fertilizer application, 2013 and 2014).We observed large peaks of N2O (up to 50 nmol m-2 s-1) in 2012 during thawing of the soil after the winter period and after re-sowing as well as inorganic fertilizer application at the beginning of summer. N2O emissions following harvest and fertilizer application ranged between 2 and 7 nmol m-2 s-1 and background fluxes were no larger than 1 nmol m-2 s-1.
Fluxes of N2O were primarily controlled by soil water content and temperature, while management activities lead to larger variation of N2O fluxes during several days after the management event when compared to the background flux measurements. Annual flux budgets were dominated by CO2 emissions and N2O emissions contributed largely to the annual budget in 2012 but to a much lesser extend in the post-disturbance years (2013/2014). CH4 flux contribution to the annual budget was negligible.
We conclude that grassland restoration results in large N2O emissions, while not leading to larger N2O emissions in subsequent years. Still, such specific time periods of enhanced N2O emissions need to be considered in decadal greenhouse gas budget estimates due to the fact that a single year can offset previous carbon and nitrogen sinks.