GC11J-07
When and What Meteorological Stresses Will Maize Crops Meet in the future in France?

Monday, 14 December 2015: 09:30
3005 (Moscone West)
Julie Caubel, CNRS, Paris Cedex 16, France and The ANR ORACLE project team
Abstract:
Climate change is expected to modify overall climatic conditions and therefore, suitability for cropping. Assessment of when and what meteorological stresses will crops meet in the future is highly useful for planners and land managers who can apply adaptation strategies to improve agricultural potentialities.

We propose to evaluate the impacts of climate change on suitability for maize cropping in terms of ecophysiology (e.g., heat stress during grain filling), yield quality (e.g., thermal conditions on protein content) and cultural practices performance (e.g., days available for harvest according to risk of waterlogged soil compaction) in two French areas. The Midi-Pyrénées (southern) and Ile-de-France (northern) regions were chosen as representing the two distinct climates when dividing France into southern and northern parts. The Midi-Pyrénées region is a major irrigated maize producer but could become penalizing in the future because of heat and water stress. By contrast, northern France could become a more suitable area thanks to the expected increasing temperature.

To confirm our assumptions, we used the method assessment for crop-climate suitability developed in Caubel et al. (2015) and based on the sub-annual analysis of agroclimatic indicators calculated over phenological periods. Indicators have been calculated using climatic data from 1950 to 2100 simulated by the global climate ARPEGE at the meso-scale SAFRAN (8 km resolution) for the two areas and forced by a greenhouse effect corresponding to the SRES A1B scenario (similar to RCP 6.0). The evaluation was done for two distinct varieties in terms of precocity. Agroclimatic indicators characterizing water deficit and water excess impacts on crop were calculated for three soils with contrasting soil water reserves and depths. Finally, the evaluation was performed with a unique sowing date (the current one), and with an optimized sowing date according to water and thermal requirements for emergence. Consequences on phenology and therefore meteorological stresses enabled to decide where and when adapting the sowing date will be useful for improving maize potentiality.

This work is carried out under the research program ORACLE (Opportunities and Risks of Agrosystems & forests in response to CLimate, socio-economic and policy changEs in France).