SM41A-2470
Design, Calibration, and Expected On-Orbit Performance of the GOES-R MPS-LO Suprathermal Plasma Analyzer Instrument
Thursday, 17 December 2015
Poster Hall (Moscone South)
Michael Joseph Golightly, John O McGarity, Bronislaw K Dichter and Gary E Galica, Assurance Technology Corporation, Carlisle, MA, United States
Abstract:
The next generation U.S. geosynchronous weather satellite—GOES series R-U—will include for the first time a suprathermal plasma analyzer. The Magnetospheric Particle Sensor-Low (MPS-LO), an electrostatic analyzer utilizing triquadrispheric geometry (270° turn)deflection electrodes, will measure the flux of electrons and ions with energies between 30 eV - 30 keV in fifteen logarithmically-spaced differential energy channels and arrival direction in twelve angular bins. MPS-LO consists of two sensor heads mounted in a common electronics box. Each sensor head contains a set of deflection electrodes, microchannel plates, and segmented detector anodes. The common electronics box provides the power and I/O interface with a data processing unit, voltage supplies for all of the instrument’s electronics, high voltage for the deflection electrodes, in-flight calibration pulsers, and the digital electronics to process signals from sensor heads’ detector anodes. Great care was taken in the manufacture and mounting of the triquadrisphere deflection electrodes; each electrode was machined from a single piece of aluminum and specific electrode combinations were mounted with precision machined spacers and matched drilling. The precise fabrication and assembly resulted in near perfect spherical electric fields between the electrodes. The triquadrispheric electrode shape also prevents photons from reaching the detection elements-as a result, MPS-LO is solar blind. The combined field-of-view for the two sensor heads is 180° x 5°, with the larger angle in a plane perpendicular to the spacecraft’s orbit and its central axis oriented anti-Earthward. An incident particle’s arrival direction is determined in one of twelve 15° x 5° angular zones. A set of shielded anodes is used to measure the background caused by penetrating charged particles that reach the MCPs; this background data is used to correct the MPS-LO data. The instrument’s energy resolution ΔE/E is 5.8%.