PP23E-03
Late Miocene Global Ocean Cooling Linked to Terrestrial Aridification and Evolutionary Events

Tuesday, 15 December 2015: 14:10
2012 (Moscone West)
Timothy Herbert, Brown Univ, Providence, RI, United States, Kira T Lawrence, Lafayette College, Easton, PA, United States, Alexandrina Tzanova, Brown University, Earth, Environmental and Planetary Science, Providence, RI, United States, Christopher Sean Kelly, Brown University, Providence, RI, United States and Laura Peterson, Luther College, Decorah, IA, United States
Abstract:
The path of global temperatures between the permanent establishment of the East Antarctic ice sheet at ~13.9 Ma and the onset of cyclical northern hemisphere glaciation at circa 2.7 Ma is poorly known. Enormous changes to terrestrial environments and ecosystems occurred approximately halfway between these polar glaciation milestones. What is perplexing is that this environmental upheaval on land occurred without any substantial evidence for late Miocene temperature change. Our single best marine index of the global climate state, the marine oxygen isotope record derived from benthic foraminifera is singularly devoid of a strong trend that would suggest notable climatic change during this time period. We present a globally distributed data set of estimated marine sea surface temperatures (SST) for the past 12 Ma reconstructed via the alkenone unsaturation method. Our reconstruction reveals what may be the strongest directional cooling of the Neogene, which occurred broadly synchronously in both hemispheres and culminated with ocean temperatures dipping to values close to the present between ~7 and 5.8 Ma before rebounding to warmer conditions in the Pliocene. The cold interval from circa 7-5.8 Ma that we reconstruct coincides very closely in time with previously enigmatic evidence of late Miocene glaciations of southeast Greenland, southeastern Alaska, and South America, with pulses of ice rafted detritus off Wilkes Land and Adelie Land and, perhaps the formation of an ice sheet on West Antarctica. A large scale forcing mechanism, such as a previously hypothesized decline in atmospheric CO2 levels from 8-6 Ma [T.E. Cerling and colleagues] seems required to coordinate the increase in late Miocene Equator-Pole temperature gradients with evidence for a contemporaneous increase in aridity on land, restructuring of terrestrial plant and animal communities, and a pronounced shift in the marine carbon cycle.