PP52A-07
A New Model of Orbital Pacing for Pliocene Glaciations

Friday, 18 December 2015: 11:50
2010 (Moscone West)
Timothy Herbert, Brown Univ, Providence, RI, United States, Harry J Dowsett, USGS, Baltimore, MD, United States and Rocio P Caballero-Gill, Brown University, Providence, RI, United States
Abstract:
The earth’s climate system has gone through major changes over time that serve as natural experiments to test our understanding of linkages and feedbacks that may come into play if the Earth continues to warm, as expected from greenhouse gas forcing. Our project investigates patterns of climate change between the northern and southern hemispheres during the mid-Pliocene epoch (~3-4 Myr ago) when the overall climate state was warmer than today. Critically, evidence suggests that the amount of ice on Antarctica was similar to today, but that there was little or no permanent ice on land in the northern hemisphere. Most climate scientists have therefore supposed that orbitally-paced climate change would initiate in the region around the Antarctic, and be driven primarily by the 41,000 year obliquity cycle. Using distributed data sets on both sea surface temperature and the combination of deep sea temperature and global ice volume recorded by ð18O, we find a pervasive influence of eccentricity/precession on Pliocene paleoclimate that has been under-appreciated. We tentatively constrain the phase of the climate response by calibrating temperature patterns to the precessional “clock” of the Mediterranean sapropel sequence. Large Pliocene glacial events were paced by precession, and coincide with minimum northern hemisphere summer insolation. This mode is in many ways the opposite of the late Pleistocene, where climate positively follows the envelope of northern hemisphere precession. In the Pliocene case, glacial periods instead followed the lower envelope of precession and nodes of low precessional variance supported peak interglacial conditions. The observations can be explained by positing that during the warmer Pliocene, the high latitudes of the northern hemisphere could only support cryosphere expansion during times of minimal summer insolation. While the presence of ice-rafted debris in the North Atlantic and North Pacific unambiguously confirm a northern hemisphere component to peak Pliocene glaciations, the amplitude of the ð18O excursions in features such as isotope stage M2 almost certainly requires a significant coupling to Antarctic ice volume as well.