A11C-0067
Factors controlling seasonal variations in Arctic black carbon
Monday, 14 December 2015
Poster Hall (Moscone South)
Zhaoyi Shen1, Yi Ming2 and Larry Wayne Horowitz2, (1)Princeton University, Princeton, NJ, United States, (2)Geophysical Fluid Dynamics Laboratory, Princeton, NJ, United States
Abstract:
Arctic haze has a distinct seasonality with higher concentrations in winter and spring. This study evaluates how different processes of large-scale circulation and removal control seasonal variations in Arctic black carbon (BC) using the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric general circulation model (AM3). We find that transport and wet deposition play unequal roles in determining Arctic BC seasonal cycle. Despite seasonal differences in general circulation patterns, the eddy-driven BC transport changes little throughout the year, and the seasonal cycle of Arctic BC is attributed to wet removal. BC hydrophilic fraction affected by the aging process and hydrophilic BC (BCpi) wet deposition rate affected by cloud microphysics determine wet deposition. Both low hydrophilic fraction and low wet deposition rate account for the peak of BC in winter. The transition to low BC in summer results from an increase in wet deposition rate, while the return of BC in late autumn is mainly caused by a sharp decrease in hydrophilic fraction. The results suggest that the concentrations of Arctic aerosols as well as their climate impacts may be susceptible to modification in a future climate.