SM53A-09
Full-Wave Modeling of EMIC Waves in the Earth’s magnetosphere
Friday, 18 December 2015: 15:28
2018 (Moscone West)
Eun-Hwa Kim, Princeton Plasma Physics Laboratory, Princeton, NJ, United States, Jay Johnson, Princeton University, Plasma Physics Laboratiry, Princeton, NJ, United States and Scott Keller, Princeton University, Princeton, NJ, United States
Abstract:
Electromagnetic (EMIC) waves are known to be excited by the cyclotron instability associated with hot and anisotropic ion distributions in the equatorial region of the magnetosphere. One of the significant scientific issues concerning EMIC waves is to understand how these waves are detected at the ground. In order to solve this puzzle, it is necessary to understand the propagation characteristics of the field-aligned EMIC waves, which include polarization reversal, cutoff, resonance, and mode coupling between different wave modes, in dipolar magnetic field. However, the inability of ray-tracing to adequately describe wave propagation near the crossover cutoff-resonance frequencies in multi-ion plasma is a one of the reasons why the scientific questions remain unsolved. Using a recently developed 2D full-wave code that solves the full wave equations in global magnetospheric geometry, we demonstrate how EMIC waves propagate to higher magnetic latitude in an electron-proton-He+ plasma. We find that polarization reversal occurs at the crossover frequency from left-hand (LH) to right-hand (RH) polarization and the RH EMIC waves can either propagate to the inner magnetosphere or reflect to the outer magnetosphere at the Buchsbaum resonance location. We also clearly found mode-coupling from guided LH EMIC waves to unguided RH or LH waves (i.e., fast mode) occurs at the crossover location, which is consistent with previous 1D full-wave analysis.