A41L-06
Advances in Atmospheric Correction for NASA’s PACE mission

Thursday, 17 December 2015: 09:15
3002 (Moscone West)
Lorraine A Remer, University of Maryland Baltimore County, Baltimore, MD, United States, Bryan A Franz, NASA Goddard Space Flight Center, Greenbelt, MD, United States, Emmanuel Boss, University of Maine, Orono, ME, United States and PACE Atmospheric Correction Science Team
Abstract:
The PACE (Pre- Aerosol, Clouds and ocean Ecosystem) mission is a strategic Climate Continuity mission, included in NASA's 2010 plan: “Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space”. On a polar orbit, PACE will make climate-quality global measurements that are essential for understanding ocean biology, biogeochemistry, ecology, aerosol and cloud properties. These measurements will be used to help determine how the ocean and atmosphere are influencing and being influenced by a changing climate. At the heart of the PACE mission is a broad spectrum moderate resolution (~1 km nadir) radiometer, called the Ocean Color Instrument (OCI). OCI will provide high spectral resolution (5 nm) from the UV to NIR (350 – 800 nm), with additional spectral bands in the NIR and SWIR to support atmospheric correction, and aerosol and cloud science. Never before has a U.S. space borne instrument measured across such a broad spectral range at such a fine spectral and spatial resolutions on a global scale. The added capability of OCI presents unique new opportunities for oceanic and atmospheric retrievals, but also new challenges, especially for atmospheric correction. These challenges are being met in a variety of creative ways. In addition to OCI, PACE may include a multi-spectral, multi-angle polarimeter that will enhance aerosol and cloud characterization, aid significantly in atmospheric correction for oceanic retrievals, and may offer new insight into characterization of oceanic hydrosols. With these advanced global remote sensing capabilities PACE is expected to: (1) Provide high quality observations for both basic science research, as well as applications; and (2) Extend the current time-series of climate quality data to enable detection of long-term trends.