OS53A-2014
Identifying the Role of Extratropical Air-Sea Interactions in North Pacific Climate Variability with a Hierarchy of CESM Simulations

Friday, 18 December 2015
Poster Hall (Moscone South)
Tianyi Sun and Yuko Okumura, University of Texas at Austin, Austin, TX, United States
Abstract:
Large-scale patterns of extratropical sea surface temperature (SST) variability are primarily driven by intrinsic modes of atmospheric circulation variability through changes in surface heat fluxes and ocean currents. While these changes in extratropical SSTs in turn affect the atmospheric circulation, it remains unclear to what extent the oceanic feedback modifies the overall climate variability. The present study focuses on North Pacific variability and revisits this long-standing problem by analyzing multi-century-millennium control simulations of an atmospheric model (CAM4) coupled to the ocean with varying degrees: a 300-yr run of standalone CAM4, 500-year run of CAM4 coupled to a slab ocean (CAM4SOM), and 1300-yr run of fully coupled model (CCSM4). The leading mode of North Pacific atmospheric variability is very similar among three models and resembles the observed Pacific-North American (PNA) pattern, in support of the stochastic climate model. In CAM4SOM, the associated surface heat flux anomalies induce SST changes during boreal winter, which tend to persist into the following winter through positive cloud feedback. These SST changes leave weak, but distinct imprints on the atmosphere. The atmospheric response is highly seasonally dependent and projects onto the original PNA pattern in the upper troposphere during boreal winter while a direct baroclinic response becomes prevalent in the other seasons. The thermodynamic air-sea interactions only marginally increase the persistency of PNA variability in CAM4SOM compared to the standalone CAM4 simulation. In CCSM4, a similar influence of extratropical SSTs is suggested but difficult to isolate due to the dominant impact of El Nino-Southern Oscillation and associated atmospheric teleconnections. Nevertheless, dynamically-induced SST variability in the oceanic frontal region appears to add more persistency to atmospheric variability because of its low-frequency nature.