A41A-0018
The Stratospheric Aerosol and Gas Experiment III/International Space Station Mission: Science Objectives and Mission Status

Thursday, 17 December 2015
Poster Hall (Moscone South)
Richard Eckman1, Joseph M Zawodny2, Michael S Cisewski1, David E Flittner1, Michael Patrick McCormick3, Joseph F Gasbarre1, Robert P Damadeo1 and Charles A Hill1, (1)NASA Langley Research Center, Hampton, VA, United States, (2)NASA Langley Research Ctr, Hampton, VA, United States, (3)Hampton University, Hampton, VA, United States
Abstract:
The Stratospheric Aerosol and Gas Experiment III/International Space Station (SAGE III/ISS) is a strategic climate continuity mission which was included in NASA's 2010 plan, "Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space.” SAGE III/ISS continues the long-term, global measurements of trace gases and aerosols begun in 1979 by SAGE I and continued by SAGE II and SAGE III on Meteor 3M. Using a well characterized occultation technique, the SAGE III instrument’s spectrometer will measure vertical profiles of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gases relevant to ozone chemistry. The mission will launch in 2016 aboard a Falcon 9 spacecraft.

The primary objective of SAGE III/ISS is to monitor the vertical distribution of aerosols, ozone, and other trace gases in the Earth’s stratosphere and troposphere to enhance our understanding of ozone recovery and climate change processes in the stratosphere and upper troposphere. SAGE III/ISS will provide data necessary to assess the state of the recovery in the distribution of ozone, extend the SAGE III aerosol measurement record that is needed by both climate models and ozone models, and gain further insight into key processes contributing to ozone and aerosol variability. The multi-decadal SAGE ozone and aerosol data sets have undergone intense community scrutiny for accuracy and stability. SAGE ozone data have been used to monitor the effectiveness of the Montreal Protocol.

The ISS inclined orbit of 51.6 degrees is ideal for SAGE III measurements because the orbit permits solar occultation measurement coverage to approximately +/- 70 degrees of latitude. SAGE III/ISS will make measurements using the solar occultation measurement technique, lunar occultation measurement technique, and the limb scattering measurement technique.

In this presentation, we describe the SAGE III/ISS mission, its implementation, the current status of the instrument, and the testing that took place this past summer. We will focus principally on the science to be conducted by the mission.