PP11E-02
Simulating a Dynamic Antarctic Ice Sheet in the Early to Middle Miocene
Monday, 14 December 2015: 08:15
3014 (Moscone West)
Edward Gasson, University of Massachusetts Amherst, Amherst, MA, United States
Abstract:
There are a variety of sources of geological data that suggest major variations in the volume and extent of the Antarctic ice sheet during the early to middle Miocene. Simulating such variability using coupled climate-ice sheet models is problematic due to a strong hysteresis effect caused by height-mass balance feedback and albedo feedback. This results in limited retreat of the ice sheet once it has reached the continental size, as likely occurred prior to the Miocene. Proxy records suggest a relatively narrow range of atmospheric CO2 during the early to middle Miocene, which exacerbates this problem. We use a new climate forcing which accounts for ice sheet-climate feedbacks through an asynchronous GCM-RCM coupling, which is able to better resolve the narrow Antarctic ablation zone in warm climate simulations. When combined with recently suggested mechanisms for retreat into subglacial basins due to ice shelf hydrofracture and ice cliff failure, we are able to simulate large-scale variability of the Antarctic ice sheet in the Miocene. This variability is equivalent to a seawater oxygen isotope signal of ~0.5 ‰, or a sea level equivalent change of ~35 m, for a range of atmospheric CO2 between 280 – 500 ppm.