GC33H-01
PERSIANN-CDR Daily Precipitation Dataset for Hydrologic Applications and Climate Studies.

Wednesday, 16 December 2015: 13:40
3005 (Moscone West)
Soroosh Sorooshian, University of California Irvine, Civil and Environmental Engineering, Irvine, CA, United States
Abstract:
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network – Climate Data Record (PERSIANN-CDR) is a newly developed and released dataset which covers more than 3 decades (01/01/1983 - 03/31/2015 to date) of daily precipitation estimations at 0.25° resolution for 60°S–60°N latitude band. PERSIANN-CDR is processed using the archive of the Gridded Satellite IRWIN CDR (GridSat-B1) from the International Satellite Cloud Climatology Project (ISCCP), and the Global Precipitation Climatology Project (GPCP) 2.5° monthly product for bias correction. The dataset has been released and made available for public access through NOAA’s National Centers for Environmental Information (NCEI) (http://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/PERSIANN/Overview.pdf).

PERSIANN-CDR has already shown its usefulness for a wide range of applications, including climate variability and change monitoring, hydrologic applications, and water resources system planning and management. This precipitation CDR data has also been used in studying the behavior of historical extreme precipitation events. Demonstration of PERSIANN-CDR data in detecting trends and variability of precipitation over the past 30 years, the potential usefulness of the dataset for evaluating climate model performance relevant to precipitation in retrospective mode, will be presented.