PA13A-2159
Assessing Climate Vulnerability and Resilience of a Major Water Resource System – Inverting the Paradigm for Specific Risk Quantification at Decision Making Points of Impact

Monday, 14 December 2015
Poster Hall (Moscone South)
Kevin W Murphy, Arizona State University, School of Geographical Sciences and Urban Planning, Tempe, AZ, United States, Andrew W Ellis, Department of Geography, College of Natural Resources, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States and Jonathan A Skindlov, The Salt River Project, Water Operations, Tempe, AZ, United States
Abstract:
Water resource systems have provided vital support to transformative growth in the Southwest United States and the Phoenix, Arizona metropolitan area where the Salt River Project (SRP) currently satisfies 40% of the area’s water demand from reservoir storage and groundwater. Large natural variability and expectations of climate changes have sensitized water management to risks posed by future periods of excess and drought. The conventional approach to impacts assessment has been downscaled climate model simulations translated through hydrologic models; but, scenario ranges enlarge as uncertainties propagate through sequential levels of modeling complexity. The research often does not reach the stage of specific impact assessments, rendering future projections frustratingly uncertain and unsuitable for complex decision-making. Alternatively, this study inverts the common approach by beginning with the threatened water system and proceeding backwards to the uncertain climate future. The methodology is built upon reservoir system response modeling to exhaustive time series of climate-driven net basin supply. A reservoir operations model, developed with SRP guidance, assesses cumulative response to inflow variability and change. Complete statistical analyses of long-term historical watershed climate and runoff data are employed for 10,000-year stochastic simulations, rendering the entire range of multi-year extremes with full probabilistic characterization. Sets of climate change projections are then translated by temperature sensitivity and precipitation elasticity into future inflow distributions that are comparatively assessed with the reservoir operations model. This approach provides specific risk assessments in pragmatic terms familiar to decision makers, interpretable within the context of long-range planning and revealing a clearer meaning of climate change projections for the region. As a transferable example achieving actionable findings, the approach can guide other communities confronting water resource planning challenges.