GC32C-07
The Geostationary Lightning Mapper: Its Performance and Calibration

Wednesday, 16 December 2015: 11:50
3014 (Moscone West)
Hugh J Christian Jr, University of Alabama in Huntsville, Huntsville, AL, United States
Abstract:
The Geostationary Lightning Mapper (GLM) has been developed to be an operational instrument on the GOES-R series of spacecraft. The GLM is a unique instrument, unlike other meteorological instruments, both in how it operates and in the information content that it provides. Instrumentally, it is an event detector, rather than an imager. While processing almost a billion pixels per second with 14 bits of resolution, the event detection process reduces the required telemetry bandwidth by almost 105, thus keeping the telemetry requirements modest and enabling efficient ground processing that leads to rapid data distribution to operational users.

The GLM was designed to detect about 90 percent of the total lightning flashes within its almost hemispherical field of view. Based on laboratory calibration, we expect the on-orbit detection efficiency to be closer to 85%, making it the highest performing, large area coverage total lightning detector. It has a number of unique design features that will enable it have near uniform special resolution over most of its field of view and to operate with minimal impact on performance during solar eclipses.

The GLM has no dedicated on-orbit calibration system, thus the ground-based calibration provides the bases for the predicted radiometric performance.

A number of problems were encountered during the calibration of Flight Model 1. The issues arouse from GLM design features including its wide field of view, fast lens, the narrow-band interference filters located in both object and collimated space and the fact that the GLM is inherently a event detector yet the calibration procedures required both calibration of images and events. The GLM calibration techniques were based on those developed for the Lightning Imaging Sensor calibration, but there are enough differences between the sensors that the initial GLM calibration suggested that it is significantly more sensitive than its design parameters. The calibration discrepancies have been resolved and will be discussed. Absolute calibration will be verified on-orbit using vicarious cloud reflections.

In addition to details of the GLM calibration, the presentation will address the unique design of the GLM, its features, capabilities and performance.