B11F-0496
Storm Event Variability in Particulate Organic Matter Source, Size, and Carbon and Nitrogen Content Along a Forested Drainage Network

Monday, 14 December 2015
Poster Hall (Moscone South)
Richard Douglas Rowland1, Shreeram P Inamdar2 and Thomas B Parr2, (1)University of Delaware, Water Science and Policy, Newark, DE, United States, (2)University of Delaware, Newark, DE, United States
Abstract:
Coupled inputs of carbon and nitrogen comprise an important energy and nutrient subsidy for aquatic ecosystems. Large storm events can mobilize substantial amounts of these elements, especially in particulate form. While the role of storms in mobilizing allochthonous particulate organic matter (POM) is well recognized, less is known about the changes in source, particle size, and composition of POM as it is routed through the fluvial network. Questions we addressed include– (a) How does source, size, and C and N content of suspended POM vary with storm magnitude and intensity? (b) How does POM size and C and N content evolve along the drainage network? (c) How accurate are high-frequency, in-situ sensors in characterizing POM?

We conducted this study in a 79 ha, forested catchment in the Piedmont region of Maryland. Event sampling for suspended POM was performed using automated stream water samplers and in-situ, high-frequency sensors (s::can specto::lyser and YSI EXO 2; 30 minute intervals) at 12 and 79 ha drainage locations. Composite storm-event sediment samples were also collected using passive samplers at five catchment drainage scales. Data is available for multiple storms since August 2014. Samples were partitioned into three discrete particle size classes (coarse: 1000-2000 µm, medium: 250-1000 µm, fine: < 250 µm) for organic C and N determination. Suspended sediments and seven soil end members were also analyzed for stable 13C and 15N isotopes ratios to characterize the evolution in sediment sources through the drainage network.

Contrary to our expectations, preliminary results suggest finer suspended sediments in the upstream portion of the catchment, and that these may contain more POM. Unsurprisingly, sensors’ ability to estimate the coarser particle classes via turbidity are weak compared to the finer class, but this is less pronounced in organic-rich sediments. Distinct patterns in in-situ absorbance spectra may suggest an ability to discern suspended particle size classes using these types of sensors.