H32D-06
Non-stationary Concentration-Discharge Relationships for Nitrogen, Phosphorus, and Sediment for Nine Major Tributaries of the Chesapeake Bay

Wednesday, 16 December 2015: 11:35
3011 (Moscone West)
Qian Zhang, Johns Hopkins University, Geography and Environmental Engineering, Baltimore, MD, United States and William P Ball, Johns Hopkins University, Baltimore, MD, United States
Abstract:
Derived from river water-quality monitoring data, concentration-discharge (C-Q) relationships are a powerful tool for understanding nutrient and sediment dynamics. Here we first present a brief review of C-Q relationships documented in the scientific literature. Major categories of observed relationships for nutrient and sediment include: (a) “dilution” patterns (i.e., negative C-Q relationships), particularly for point-source dominated rivers; and (b) “concentration” patterns (i.e., positive C-Q relationships), particularly for nonpoint-source dominated rivers. In the second part of our work, we present a comprehensive evaluation of riverine C-Q patterns for multiple water-quality constituents for the nine major non-tidal tributaries of the Chesapeake Bay. Specifically, we have analyzed concentration data sets of total nitrogen, nitrate plus nitrite, total phosphorus, dissolved orthophosphate, and suspended sediment for the period between the 1980s and 2015. Separation of the monitoring data into non-overlapping decadal periods revealed clear non-stationarity in C-Q relationships for many of the selected site-constituent combinations. These temporal changes in C-Q relationships generally reflected changes in dominant watershed sources of nutrients and sediment (e.g., reduction in point-source dominance for total nitrogen in the Patuxent River due to technology upgrade at wastewater treatment plants) and are consistent with trends observed in previous research. The findings also highlight the potential pitfalls of assuming stationary C-Q relationships when estimating riverine concentrations and fluxes or analyzing their trends.