EP33E-03
Evaluating process origins of sand-dominated fluvial stratigraphy
Wednesday, 16 December 2015: 14:10
2005 (Moscone West)
Ellen Chamberlin and Elizabeth A Hajek, Pennsylvania State University Main Campus, University Park, PA, United States
Abstract:
Sand-dominated fluvial stratigraphy is often interpreted as indicating times of relatively slow subsidence because of the assumption that fine sediment (silt and clay) is reworked or bypassed during periods of low accommodation. However, sand-dominated successions may instead represent proximal, coarse-grained reaches of paleo-river basins and/or fluvial systems with a sandy sediment supply. Differentiating between these cases is critical for accurately interpreting mass-extraction profiles, basin-subsidence rates, and paleo-river avulsion and migration behavior from ancient fluvial deposits. We explore the degree to which sand-rich accumulations reflect supply-driven progradation or accommodation-limited reworking, by re-evaluating the Castlegate Sandstone (Utah, USA) and the upper Williams Fork Formation (Colorado, USA) – two Upper Cretaceous sandy fluvial deposits previously interpreted as having formed during periods of relatively low accommodation. Both units comprise amalgamated channel and bar deposits with minor intra-channel and overbank mudstones. To constrain relative reworking, we quantify the preservation of bar deposits in each unit using detailed facies and channel-deposit mapping, and compare bar-deposit preservation to expected preservation statistics generated with object-based models spanning a range of boundary conditions. To estimate the grain-size distribution of paleo-sediment input, we leverage results of experimental work that shows both bed-material deposits and accumulations on the downstream side of bars (“interbar fines”) sample suspended and wash loads of active flows. We measure grain-size distributions of bar deposits and interbar fines to reconstruct the relative sandiness of paleo-sediment supplies for both systems. By using these novel approaches to test whether sand-rich fluvial deposits reflect river systems with accommodation-limited reworking and/or particularly sand-rich sediment loads, we can gain insight into large-scale downstream-fining and mass-extraction trends in basins with limited exposure.