P51C-2068
Analysis of Volcanic Deposits on Venus Using Radar Polarimetry

Friday, 18 December 2015
Poster Hall (Moscone South)
Madison Douglas, Massachusetts Institute of Technology, Cambridge, MA, United States and Lynn M Carter, NASA Goddard Space Flight Center, Greenbelt, MD, United States
Abstract:
The atmosphere of Venus is relatively transparent at radio wavelengths, providing an opportunity to examine its volcanic planetary surface using radar. The highest resolution radar images come from the Magellan mission, which mapped 98% of Venus’s surface by transmitting and receiving unidirectionally polarized radio waves. Upgrades to the ground-based Arecibo telescope in 1999 allowed further imaging of the surface of Venus at conjunction in 1999, 2001, and 2004 by the transmission of a circularly polarized beam at 12.6cm wavelength and then the reception of two orthogonal circular polarization components [Carter et al., 2006]. We apply the Stokes vector method to the Arecibo measurements to calculate the circular polarization ratio (CPR), an indication of surface roughness, and the degree of linear polarization (DLP), a measure of whether there is subsurface scattering of the radar wave. We combine both the CPR and DLP datasets to enable a more holistic geologic interpretation of Magellan images. This allows us to examine geographic variations in high-altitude, high-emissivity regions such Beta Regio, and to investigate regions that may contain young lava flows such as Themis Regio. Our approach permits a more precise geologic mapping of the textures of coronas and lava flow fields, including the identification of abnormally rugged lava flows. The data were also used to search for pyroclastics emanating from large and intermediate sized volcanoes within the region visible to Arecibo.