Adaptation of rainfed agriculture to climatic variability in the Mixteca Alta Region of Oaxaca, Mexico

Friday, 18 December 2015
Poster Hall (Moscone South)
Paul Rogé, Michigan State University, East Lansing, MI, United States, Andrew Ronald Friedman, Institut Pierre Simon Laplace - IPSL / LOCEAN, Paris, France, Marta Astier, UNAM National Autonomous University of Mexico, CIGA, Morelia, Mexico and Miguel Altieri, University of California Berkeley, Berkeley, CA, United States
The traditional management systems of the Mixteca Alta Region of Oaxaca, Mexico offer historical lessons about resilience to climatic variability. We interviewed small farmers to inquire about the dynamics of abandonment and persistence of a traditional management systems. We interpret farmers' narratives from a perspective of general agroecological resilience. In addition, we facilitated workshops in small farmers described their adaptation to past climate challenges and identified 14 indicators that they subsequently used to evaluate the condition of their agroecosystems. The most recent years presented increasingly extreme climatic and socioeconomic hardships: increased temperatures, delayed rainy seasons, reduced capacity of soils to retain soil moisture, changing cultural norms, and reduced rural labor. Farmers reported that their cropping systems were changing for multiple reasons: more drought, later rainfall onset, decreased rural labor, and introduced labor-saving technologies. Examination of climate data found that farmers' climate narratives were largely consistent with the observational record. There have been increases in temperature and rainfall intensity, and an increase in rainfall seasonality that may be perceived as later rainfall onset. Farmers ranked landscape-scale indicators as more marginal than farmer management or soil quality indicators. From this analysis, farmers proposed strategies to improve the ability of their agroecosystems to cope with climatic variability. Notably, they recognized that social organizing and education are required for landscape-level indicators to be improved. Transformative change is required to develop novel cropping systems and complementary activities to agriculture that will allow for farming to be sustained in the face of these challenges. Climate change adaptation by small farmers involves much more than just a set of farming practices, but also community action to tackle collective problems.