SH21C-04
Multiwavelength Observations of a Slow Raise, Multi-Step X1.6 Flare and the Associated Eruption

Tuesday, 15 December 2015: 08:54
2011 (Moscone West)
Vasyl Yurchyshyn, Big Bear Solar Observatory, Big Bear City, CA, United States
Abstract:
Using multi-wavelength observations we studied a slow rise, multi-step X1.6 flare that began on November 7, 2014 as a localized eruption of core fields inside a δ-sunspot and later engulfed the entire active region. This flare event was associated with formation of two systems of post eruption arcades (PEAs) and several J-shaped flare ribbons showing extremely fine details, irreversible changes in the photospheric magnetic fields, and it was accompanied by a fast and wide coronal mass ejection. Data from the Solar Dynamics Observatory, IRIS spacecraft along with the ground based data from the New Solar Telescope (NST) present evidence that i) the flare and the eruption were directly triggered by a flux emergence that occurred inside a δ--sunspot at the boundary between two umbrae; ii) this event represented an example of an in-situ formation of an unstable flux rope observed only in hot AIA channels (131 and 94Å) and LASCO C2 coronagraph images; iii) the global PEA system spanned the entire AR and was due to global scale reconnection occurring at heights of about one solar radii, indicating on the global spatial and temporal scale of the eruption.