SH54B-05
Continuing the Search for Natural Solar Wind States

Friday, 18 December 2015: 17:00
2009 (Moscone West)
D Aaron Roberts1, Tamara Sipes2 and Homayoun Karimabadi2, (1)NASA Goddard Space Flight Center, Code 672, Greenbelt, MD, United States, (2)SciberQuest, Del Mar, CA, United States
Abstract:
The need to classify solar wind states is partially the practical one of knowing what winds will strongly affect the Earth, but it is also to help in understanding the origin of the winds. In terms of the latter classification, of interest here, there is general agreement that "ejecta" represent a separate class from ordinary winds, although the details of which parcels qualify as ejecta are still subject to considerable disagreement. It has become clear that the distinction between "slow" and "fast" wind is at best misleading, and slow wind sometimes displays temperature anisotropies, fluctuation spectra, and the like that are characteristic of the typical fast wind. Recent work has focused on distinguishing "coronal hole wind" from "streamer belt" and "strahl confusion zone" (heliospheric current sheet) winds. The hope is to discern which wind comes from coronal holes versus the boundaries of holes versus near active regions or other sources. The present work extends a simple method of clustering in the parameter space of a selected set of variables to see if "natural" states of wind arise. This method (primarily "K-means" but we are also trying others) has proven capable of distinguishing states very similar to those in recent categorizations, especially when the variables of cross-helicity and residual energy are added to the parameter list, but we also find new, persistent, categories. The present work will look in more detail at the derived states and at different times in the solar cycle. One suggestion in the research so far is that shock-like structures are fundamental in the mix; these have largely been ignored in recent work in solar wind heating.