SA52A-04
Solar Cycle Variability in Mean Thermospheric Composition and Temperature Induced by Atmospheric Tides

Friday, 18 December 2015: 11:05
2016 (Moscone West)
McArthur Jones Jr1,2, Jeffrey M Forbes1 and Maura E Hagan3, (1)University of Colorado at Boulder, Boulder, CO, United States, (2)US Naval Research Laboratory, Washington, DC, United States, (3)National Center for Atmospheric Research, High Altitude Observatory, Boulder, CO, United States
Abstract:
Vertically-propagating atmospheric thermal tides whose origins lie in Earth’s lower atmosphere are now widely recognized as one of the dominant "meteorological” drivers of space weather. Many prior research efforts have focused on documenting and understanding the role that dissipating tides play in determining the longitudinal and seasonal variability associated with lower thermospheric winds, temperature, and constituent densities. However, considerably less attention has focused on understanding the potential solar cycle variability in the mean thermospheric state induced by the tides. In this paper we utilize the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM), forced with observationally-based tides at the model lower boundary from the Climatological Tidal Model of the Thermosphere (CTMT, from Oberheide et al. [2011]), to elucidate how the dissipating tides induce variations of up to 30 K in the zonal-mean thermosphere temperature between solar minimum and maximum. Numerical experiments are performed for the month of September and for solar minimum, medium, and maximum conditions in order to quantify the solar cycle variability associated with the different terms in the thermodynamic energy, major and minor neutral constituent continuity equations. Our analysis indicates that solar cycle variability in neutral temperatures results from a combination of net eddy heat transport effects and tidal modulation of net nitric oxide (NO) cooling. The chemical and dynamical pathways through which dissipating tides affect mean NO cooling differently at solar minimum and maximum are diagnosed.