GC52B-04
Characterization and Quantification of Uncertainty in the NARCCAP Regional Climate Model Ensemble and Application to Impacts on Water Systems

Friday, 18 December 2015: 11:05
3001 (Moscone West)
Linda O Mearns, National Center for Atmospheric Research, Boulder, CO, United States
Abstract:
In this talk we present the development of a joint Bayesian Probabilistic Model for the climate change results of the North American Regional Climate Change Assessment Program (NARCCAP) that uses a unique prior in the model formulation. We use the climate change results (joint distribution of seasonal temperature and precipitation changes (future vs. current)) from the global climate models (GCMs) that provided boundary conditions for the six different regional climate models used in the program as informative priors for the bivariate Bayesian Model. The two variables involved are seasonal temperature and precipitation over sub-regions (i.e., Bukovsky Regions) of the full NARCCAP domain. The basic approach to the joint Bayesian hierarchical model follows the approach of Tebaldi and Sansó (2009). We compare model results using informative (i.e., GCM information) as well as uninformative priors. We apply these results to the Water Evaluation and Planning System (WEAP) model for the Colorado Springs Utility in Colorado. We investigate the layout of the joint pdfs in the context of the water model sensitivities to ranges of temperature and precipitation results to determine the likelihoods of future climate conditions that cannot be accommodated by possible adaptation options. Comparisons may also be made with joint pdfs formed from the CMIP5 collection of global climate models and empirically downscaled to the region of interest.