OS42A-06
Hydrothermal Exploration of Mid-Ocean Ridges: Where Might the Largest Sulfide Deposits Occur?
Thursday, 17 December 2015: 11:35
3009 (Moscone West)
Christopher R German1, Sven Petersen2 and Mark D Hannington2,3, (1)Woods Hole Oceanographic Institution, Woods Hole, MA, United States, (2)GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, (3)University of Ottawa, Ottawa, ON, Canada
Abstract:
We review the distribution of modern-day seafloor hydrothermal activity along the global mid-ocean ridge crest (MOR) and the mineral deposits being formed at those sites. To date, one form of hydrothermal activity – “black smoker” venting – has been prospected for along >30% of the global mid ocean ridge crest and some important trends have emerged. Submarine venting can occur along all mid-ocean ridges, of all spreading rates, in all ocean basins. While the abundance of currently active venting (from water column signals), scales linearly with seafloor spreading rate (a proxy for magmatic heat-flux) there is an “excess” of high temperature venting along slow and ultra-slow spreading ridges when compared to early predictions. Consistent with this, no more than half of the sites responsible for “black smoker” plume signals along the slow spreading Mid Atlantic Ridge are associated with magmatic systems with the other half hosted under tectonic control. The latter appear both to be longer-lived than, and to give rise to much larger sulfide deposits than, their magmatic counterparts - presumably as a result of sustained fluid flow. Where these tectonic-hosted systems also involve water-rock interaction with ultramafic sources, seafloor massive sulfide deposits exhibit highly concentrated Cu and Au in surface samples (>10wt.% average Cu content and >3ppm average Au). Intriguingly, first detailed examinations of hydrothermally active sites along ultraslow-spreading ridges seems to indicate that they may depart beyond the slow-spreading Mid-Atlantic Ridge pattern. Hydrothermal plume distributions may follow the same (~50:50) distribution of “black smoker” plume signals between magmatic and tectonics settings, but the first three “black smoker” sites tracked to source have all revealed large polymetallic sulfide deposits - in both magmatic as well as tectonic settings. Could ultra-slow ridges represent the richest mineral resource potential along the global MOR?