A33B-0144
A Non-Incompressible Non-Boussinesq (NINB) framework for studying atmospheric turbulence

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Cristina L Archer, Chi Yan, Shengbai Xie and Niranjan Ghaisas, University of Delaware, Newark, DE, United States
Abstract:
The incompressible assumption is widely used for studying the turbulent atmospheric boundary layer (ABL) and is generally accepted when the Mach number < ~0.3 (velocity < ~100 m/s). Since the tips of modern wind turbine blades can reach and exceed this threshold, neglecting air compressibility will introduce errors. In addition, if air incompressibility does not hold, then the Boussinesq approximation, by which air density is treated as a constant except in the gravity term of the Navier-Stokes equation, is also invalidated. Here, we propose a new theoretical framework, called NINB for Non-Incompressible Non-Boussinesq, in which air is not considered incompressible and air density is treated as a non-turbulent 4D variable. First, the NINB mass, momentum, and energy conservation equations are developed using Reynolds averaging. Second, numerical simulations of the NINB equations, coupled with a k-epsilon turbulence model, are performed with the finite-volume method. Wind turbines are modeled with the actuator-line model using SOWFA (Software for Offshore/onshore Wind Farm Applications). Third, NINB results are compared with the traditional incompressible buoyant simulations performed by SOWFA with the same set up.

The results show differences between NINB and traditional simulations in the neutral atmosphere with a wind turbine. The largest differences in wind speed (up to 1 m/s), turbulent kinetic energy (~10%), dissipation rate (~5%), and shear stress (~10%) occur near the turbine tip region. The power generation differences are 5-15% (depending on setup). These preliminary results suggest that compressibility effects are non-negligible around wind turbines and should be taken into account when forecasting wind power. Since only a few extra terms are introduced, the NINB framework may be an alternative to the traditional incompressible Boussinesq framework for studying the turbulent ABL in general (i.e., without turbines) in the absence of shock waves.