H51F-1430
Effects of interface orientation on deformation, mixing, and reaction rates in steady-state and transient shear flows
Abstract:
Reactive transport problems are highly complex and contain a large number of factors that influence the temporal evolution of the system. Physical and chemical heterogeneity, mixing, and even the dimensionality of the system are all known to be important considerations but one important factor that has received comparatively little attention is the initial condition (IC). Oftentimes a single configuration for the IC is selected for a particular study and the other aspects of the problem are varied, but the sensitivity of the problem to perturbations in that IC is not addressed. This work specifically considers how minor changes to the IC affect a mixing limited reactive transport system.A relatively simple flow field is used to investigate changes in global reaction rates for a single, interface-mixing type transport problem. The IC is rotated to several different orientations for the simulations, each having identical reactant masses and initial particle distributions. Reactions are simulated using a Lagrangian, colocation based model that does not assume the reaction system is well mixed. The effects of the rotations on the mixing and reaction rates are variable, manifesting mostly as an increase in product formation relative to pure diffusion, but some configurations inhibit reactions at early times. The orientation of the interface relative to the directions of deformation and the velocity can be used to predict whether reactions rates will increase or decrease, relative to a deformation free flow. The same numerical experiments are then conducted in a transient, periodic shear flow, which exhibits similar results. Both sets of results have implications about how reaction rates should be upscaled and suggest that the configuration of the IC may be as important as proper characterization of the subsurface when considering reactions in complex systems.