SH43B-2449
Magnetic confinement effects on the particle escape from the loop top in stochastic acceleration models for solar flares.
Thursday, 17 December 2015
Poster Hall (Moscone South)
Frederic Effenberger and Vahe Petrosian, Stanford University, Stanford, CA, United States
Abstract:
Stochastic acceleration scenarios are among the most promising candidates to explain the high energies attained by particles in solar flares. Recent progress in the determination of fundamental acceleration parameters using novel techniques for the inversion of high resolution RHESSI hard X-ray spectra allows to determine non-thermal electron spectra at the loop top and foot points of a flare loop (Chen \& Petrosian 2014). One outcome of this work is that the trapping and escape of the electrons is governed by wave particle scatterings and convergence of magnetic lines of force. Here, we present a computational study of the transport and escape processes of particles in the acceleration region. We employ a Fokker-Planck model, which includes pitch-angle scattering and magnetic mirroring in a non-uniform magnetic field. This allows to test analytical approximations for the particle escape times in the loop top region, which are helpful to constrain the key particle acceleration parameters. New perspectives will be given on how the insights gained from the analysis of the particle confinement will enable subsequent studies of a broader class of solar flares.