B22B-06
Benthic Foraminifera, Food in the Deep Sea, and Limits to Bentho-Pelagic Coupling

Tuesday, 15 December 2015: 11:35
2002 (Moscone West)
Ellen Thomas, Yale University, New Haven, CT, United States, Flavia Boscolo-Galazzo, Padova University, Department of Geosciences, Padova, Italy, Gabriela J. Arreguin-Rodriguez, Universidad de Zaragoza, Departamento de Ciencias de la Tierra, Zaragoza, Spain, Silvia Ortiz, PetroStrat Ltd, Conwy, United Kingdom and Laia Alegret, University of Zaragoza, Zaragoza, Spain
Abstract:
The deep-sea is the largest habitat on Earth, contains highly diverse biota, but is very little known. Many of its abundant benthic biota (e.g., nematodes) are not preserved in the fossil record. Calcareous and agglutinated benthic foraminifera (unicellular eukaryotes, Rhizaria; efficient dispersers) and ostracodes (Animalia, Crustacea; non-efficient dispersers) are the most common organisms providing a fossil record of deep-sea environments. Very little food is supplied to the deep-sea, because organic matter produced by photosynthesis is largely degraded before it arrives at the seafloor. Only a few % of organic matter is carried to the ocean bottom by ‘marine snow’, with its particle size and behavior in the water column controlled by surface ecosystem structure, including type of dominant primary producers (diatoms, cyanobacteria). Food supply and its seasonality are generally seen as the dominant control on benthic assemblages (combined with oxygenation), providing bentho-pelagic coupling between primary and benthic productivity. Benthic foraminiferal assemblages (composition and density) thus are used widely to estimate past productivity, especially during episodes of global climate change, ocean acidification, and mass extinction of primary producers. We show that some environmental circumstances may result in interrupting bentho-pelagic coupling, e.g. through lateral supply of organic matter along continental margins (adding more refractory organic matter), through trophic focusing and/or fine particle winnowing on seamounts (giving an advantage to suspension feeders), and through carbonate undersaturation (giving advantage to infaunal over epifaunal calcifyers). In addition, increased remineralization of organic matter combined with increased metabolic rates may cause assemblages to reflect more oligotrophic conditions at stable primary productivity during periods of global warming. As a result, benthic foraminiferal accumulation rates must be carefully evaluated before use as proxies for primary productivity.