C21D-08
Fire impacts on the cryosphere

Tuesday, 15 December 2015: 09:45
3002 (Moscone West)
Natalie M Kehrwald, USGS-GECSC, Lakewood, CO, United States
Abstract:
Continental-scale smog clouds and massive boreal smoke plumes deposit dark particles on glaciers, darkening their surfaces and altering surface albedo. These atmospheric brown clouds are primarily comprised of both fossil fuel and biomass burning combustion products. Here, we examine the biomass burning contribution to aerosols trapped in the cryosphere through investigating the specific molecular marker levoglucosan (1,6-anhydro-β-D-glucopyranose) in ice cores. Levoglucosan is only produced by cellulose combustion, and therefore is an ideal comparison for multi-proxy investigations incorporating other markers with multiple sources.

Wildfire combustion products are a major component of dark aerosols deposited on the Greenland ice sheet during the 2012 melt event. Levoglucosan concentrations that demonstrate the biomass burning contribution are similar to black carbon concentrations that record both fossil fuel and biomass burning during this same event. This similarity is especially important as levoglucosan and black carbon trends differ during the industrial era in the NEEM, Greenland ice core, demonstrating different contributions of fossil fuel and biomass burning to the Greenland ice sheet. These differences are also present in the EPICA Dome C Antarctic ice core. Low-latitude ice cores such as Kilimanjaro, Tanzania and Muztag, Tibet demonstrate that climate is still the primary control over fire activity in these regions, even with increased modern biomass burning and the possible impacts of atmospheric brown clouds.