S43F-05
A Large Refined Catalog of Earthquake Relocations and Focal Mechanisms for the Entire Island of Hawaii and Their Seismotectonic Implications
Thursday, 17 December 2015: 14:40
307 (Moscone South)
Guoqing Lin, University of Miami, Department of Marine Geosciences, Miami, FL, United States and Paul Okubo, Hawaiian Volcano Observatory, Hawaii National Park, HI, United States
Abstract:
We present a refined catalog of earthquake locations and focal mechanisms for the Island of Hawaii, focusing on Mauna Loa and Kilauea volcanoes. The location catalog is based on first-arrival times and waveform data of both compressional and shear waves from over 181,000 events on and near the Island of Hawaii between 1986 and 2009 recorded by the seismic stations at the Hawaiian Volcano Observatory. We relocate all the earthquakes by applying ray-tracing through an existing three-dimensional velocity model, similar event cluster analysis and a differential-time relocation method. The resulting location catalog represents an extension of previous relocation studies, covering a longer time period and consisting of more events with well-constrained absolute locations. The focal mechanisms are obtained based on the compressional-wave first motion polarities by applying the HASH program to the waveform cross-correlation relocated earthquakes. Overall, the good-quality focal solutions are dominated by normal faulting in our study area, especially in the active Kaoiki and Hilea seismic zones. Kilauea caldera is characterized by a mixture of approximately equal numbers of normal, strike-slip, and reverse faults, whereas focal mechanisms in its south flank are predominantly reverse. Our results are essential for mapping the seismic strain and stress field and for understanding the seismo-volcano-tectonic relationships within the magmatic systems.