B33C-0687
Methane and Carbon Dioxide Fluxes from Stems, Soils, and Coarse Woody Debris in a Temperate Forest
Wednesday, 16 December 2015
Poster Hall (Moscone South)
Daniel L Warner1, Samuel Villarreal1 and Rodrigo Vargas2, (1)University of Delaware, Plant and Soil Sciences, Newark, DE, United States, (2)University of Delaware, Newark, DE, United States
Abstract:
Quantifying the magnitude and variability of greenhouse gas fluxes from different terrestrial carbon pools is necessary for enhancing understanding of terrestrial carbon cycling. While much more is known about variability CO2 fluxes, we have little information on how CH4 fluxes vary across multiple carbon pools within terrestrial ecosystems. We measured fluxes of CH4 and CO2 from living tree stems, soils, and coarse woody debris within a temperate forested watershed during the growing season (May-November). Fluxes of both CH4 and CO2 were significantly different among carbon pools. Living tree stems were weak sources of both CH4 and CO2 with seasonal means (± 1 SD) of 0.08 ± 0.19 nmol CH4 m-2 s-1 and 1.16 ± 1.21 µmol CO2 m-2 s-1. Soils were sinks of CH4 and sources of CO2 with seasonal means (± 1 SD) of -2.00 ± 1.41 nmol CH4 m-2 s-1 and 3.07 ± 2.10 µmol CO2 m-2 s-1. Fluxes of CH4 and CO2 from coarse woody debris were largely variable relative to the other pools with seasonal means (± 1 SD) of -0.21 ± 0.76 nmol CH4 m-2 s-1 and 2.61 ± 2.50 µmol CO2m-2 s-1. Gas fluxes varied significantly (p < 0.05) between sampling sites for both living stems and coarse woody debris, but not for soils. For living stems, this variability was explained by differences in tree species, where N. sylvatica had largest seasonal mean flux of CH4 and L. tulipifera had the largest seasonal mean flux of CO2. For woody debris sites, the variability was explained wood density, with dense, fresh wood acting as CH4 sources, and less dense, decayed wood acting as CH4 sinks. Our results show homogeneity in soil CH4 and CO2 fluxes, but a large heterogeneity in fluxes from tree stems and coarse woody debris. These results provide insights on how forest management strategies could influence greenhouse gas emissions from forested watersheds.