C51B-0699
Internally Drained Supraglacial River Catchments on the Southwest Greenland Ice Sheet

Friday, 18 December 2015
Poster Hall (Moscone South)
Kang Yang1, Laurence C Smith1, Vena W. Chu2, Lincoln H Pitcher1 and Colin J Gleason1, (1)University of California Los Angeles, Los Angeles, CA, United States, (2)University of California Berkeley, Berkeley, CA, United States
Abstract:
Internally drained catchments are the hydrologic units on the Greenland ice sheet (GrIS) surface that collect and drain meltwater into moulins or supraglacial lakes without out flows. Understanding the spatial pattern of these internal catchments is critical, which can provide key information about how supraglacial meltwater is transported and released on the ice surface. This study proposed an automatic approach to detect supraglacial hydrologic features (rivers, lakes, moulins, and internal catchments) located at southwest GrIS from Landsat-8 OLI panchromatic imagery. A total of 800 internal catchments are delineated and the average catchment size (river network length) is found to increase with elevations. In addition, moulins are the prime way to drain internal catchments and the average moulin densities decrease with elevations. Adaptive depression area thresholds are calculated to achieve optimal match between DEM-modeled and image-detected internal catchment patterns. The pattern of these image-detected internal catchments also indicates that: 1) not all the DEM-modeled topographic depressions act as meltwater sinks; 2) moulin distribution greatly impacts the internal catchment patterns; and 3) topographic depressions can be connected downstream without being fully filled, changing the fragmentary of the internal catchments.