ED41A-0860
Observing Evolutionary Entropy in Relation to Body Size Over Time
Abstract:
The Second Law of Thermodynamics, according to Clausius, states that entropy will always increase in the universe, meaning systems will break down and become simple and chaotic. However, this is seemingly contradicted by the existence of living organisms, which can have highly complex and organized systems. Furthermore, there is a greater contradiction in the theory of evolution, which sees organisms growing larger and becoming more complex over time. Our research project revolved around whether organisms actually became more complex over time, and correlating these findings with the body size of these organisms.We analyzed the relationship between body size and cell types of five different marine phyla: arthropods, brachiopods, chordates, echinoderms, and mollusks. We attempted to find a relation between the biovolume of these different phyla and the number of specialized cell types that they had, which is a common measure of biocomplexity. In addition, we looked at the metabolic intensity, which is the mass-specific rate of energy processing applied to an organism’s size, because it is also correlated to genetic complexity. Using R programming, we tested for correlations between these factors.
After applying a Pearson correlation test, we discovered a generally positive correlation between the body sizes, number of cell types, and metabolic intensities of these phyla. However, one exception is that there is a negative correlation between the body size and metabolic intensity of echinoderms. Overall, we can see that marine organisms tend to evolve larger and more complex over time, and that is a very interesting find. Our discovery yielded many research questions and problems that we would like to solve, such as how the environment is thermodynamically affected by these organisms.