A13C-0340
The role of atmospheric synoptic conditions in the Beaufort and Chukchi seasonal ice zone

Monday, 14 December 2015
Poster Hall (Moscone South)
Zheng Liu, University of Washington Seattle Campus, Seattle, WA, United States and Axel J B Schweiger, Applied Physics Laboratory University of Washington, Seattle, WA, United States
Abstract:

How atmosphere and sea ice interact depends on the prevailing weather. Synoptic activities transport energy and moisture into the Arctic and modify the structure of the atmosphere, cloud conditions, and the surface energy budget over sea ice. The structure of the atmosphere, such as temperature inversions and specific humidity inversions are critical for the life cycle of Arctic clouds. Cloud radiative heating is an important component of the Arctic surface energy budget. The differences in the structure of the atmosphere, clouds, and the radiation balance at the surface under different synoptic conditions will determine which processes will govern the interaction between the atmosphere and clouds.

In this study, dominant synoptic types over the Beaufort and Chukchi seasonal ice zone (BCSIZ) are identified using the ERA-Interim reanalysis data sets and a k-mean clustering synoptic classification algorithm. The synoptic classification algorithm categorizes individual weather events in the atmospheric reanalysis into four synoptic types with distinct signatures in baroclinicity and temperature advection. The typical structure of the atmosphere in ERA-Interim is determined for each synoptic type. In particular the structure of the summer atmosphere across the ice edge along 150°W and 140°W longitude will be the analyzed and evaluated with observations obtained from the Seasonal Ice Zone Reconnaissance Survey (SIZRS). Cloud conditions and cloud radiative forcings at the surface under different synoptic conditions are determined using satellite observations, from MODIS, CloudSat, and Calipso, and modeled clouds in reanalysis. The influence of synoptic conditions on the structure of atmosphere and cloud through heat and moisture transport is explored and the consequent effects on the surface energy budget in BCSIZ are assessed.