DI52B-07
Apollinaris Patera: An Early Martian Mantle Plume?

Friday, 18 December 2015: 11:50
308 (Moscone South)
Walter S. Kiefer, Lunar and Planetary Institute, Houston, TX, United States
Abstract:
Apollinaris Patera is one of the largest volcanos on Mars outside of the Tharsis volcanic province (summit relief 5.4 km, volume 7.3x1013 m3). The mapped crater densities on Apollinaris indicate that volcanic activity ended 3.5 to 3.8 billion years ago. Apollinaris is located on the northern (lowland) side of the martian hemispheric dichotomy. Because it is an isolated, relatively point-like source of volcanism, it is plausibly interpreted as an early example of a martian mantle plume. Plume structure and conditions in the mantle can be constrained using finite element mantle convection simulations combined with a variety of petrological, geophysical, and geologic observations. (1) Basalts studied by the MER Spirit rover in nearby Gusev crater are similar in age and possibly physically connected to Apollinaris Patera. Petrologic modeling of the Gusev crater basalt compositions indicates that the thermal lithosphere was about 100 km thick with a mantle potential temperature of 1480-1530 °C. This requires a mantle thermal Rayleigh number of about 2x108 at the time of volcanism, based on the volume-averaged mantle viscosity. (2) Pyroclastic deposits at Apollinaris indicate that at least a portion of the volcanism occurred in the presence of a high concentration of water or other volatiles. This lowers the solidus temperature and increases the magma production rate but has only a limited effect on the minimum depth of melting. (3) There is a localized magnetic anomaly beneath Apollinaris that indicates that the martian core dynamo persisted until at least the earliest stage of Apollinaris volcanism, which in turn sets a lower bound on the core heat flux of 5-10 mW m-2. Preservation of the magnetic field may be the result of formation of magnetic minerals such as magnetite due to volcanically-driven hydrothermal alteration of crustal rocks beneath Apollinaris.