B33C-0696
Impact of Land Use on Soil Respiration in Southwestern Victoria
Wednesday, 16 December 2015
Poster Hall (Moscone South)
Bertrand Teodosio, Monash University, Civil Engineering, Melbourne, Australia, Edoardo Daly, Monash University, Melbourne, VIC, Australia and Valentijn R N Pauwels, Monash University, Melbourne, Australia
Abstract:
Land use management is one of the key contributors to the global environmental change. Considerable changes in landscapes have been experienced in Southwestern Victoria, Australia in the past two decades. Eucalyptus globulus (blue gum) plantations have expanded, resulting in possible changes in the water and carbon balances of catchments. The shift from pastures to plantations could have a significant impact on the local carbon balance with possible effects on atmospheric CO2 concentration and vegetation productivity. We present preliminary measurements from a field study comparing soil respiration in a plantation and a pasture. Adjacent catchments in Southwestern Victoria, near Gatum, were used as study areas; the prominent difference between the two catchments is the land use, with one catchment being used as a pasture for livestock grazing and the other catchment being mainly planted with blue gums. The variability of soil respiration in the pasture is governed by differences in soil moisture and substrate content due to local features of the topography and livestock grazing. Soil respiration measurements in the plantation were taken on mounds, access tracks, and open spaces. Most observations on mounds had higher soil respiration possibly due to root and mycorrhizal respiration. The measurements in open spaces had comparable values with mound measurements; this might be due to a less limited radiation. The soil respiration between trees had lower values, possibly because of radiation limitation due to the canopy cover. These preliminary measurements allow us to compare soil respiration variability across catchments with different land uses. This is important to estimate CO2 fluxes from soil to the atmosphere in large areas and will be valuable in estimating gross primary production from measurements of net ecosystem exchange.