H23D-1616
Wetting and Interfacial Tension Dynamics of Oil-Nanofluids-Surface Minerals System
Tuesday, 15 December 2015
Poster Hall (Moscone South)
Lingyun Bai1, Chunyan Li2, Christophe J G Darnault3, Caroline Korte2, David Ladner2 and Huge Daigle4, (1)Clemson University, Environmental Engineering and Earth Science, Clemson, SC, United States, (2)Clemson University, Department of Environmental Engineering and Earth Sciences, Clemson, SC, United States, (3)Clemson University, Clemson, SC, United States, (4)University of Texas at Austin, Department of Petroleum and Geosystems Engineering, Austin, TX, United States
Abstract:
Among the techniques used in enhanced oil recovery (EOR), chemical injection involves the injection of surfactants to increase the oil mobility and decrease the interfacial tension (IFT). With the nanotechnology revolution, the use of nanoparticles has shown unique opportunities in petroleum engineering due to their physico-chemical properties. Our research examines the potential application of nanoparticles as a means of EOR by studying the influence of silicon oxide nanoparticles on the wettability and IFT of oil-nanofluids-surface systems. Batch studies were conducted to assess the stability of the nanoparticle suspensions of different concentrations (0, 0.001, 0.005, 0.01, 0.05 and 0.1 wt. %) in different reservoir conditions with and without the addition of surfactants (i.e. 5% brine, and Tween 20 at 0.5 and 2 cmc). Testing of oil-nanofluids and oil-nanofluids-minerals interactions was performed using crude oils from West Texas (light, API 40), Prudhoe Bay (medium, API 28), and Lloydminster (heavy, API 20). The dynamic behavior of IFT was measured using a pendant drop method. Results for 5% brine-nanoparticle systems indicated that 0.001 and 0.01 wt.% of nanoparticles contributed to a significant decrease of IFT for West Texas and Prudhoe Bay oils, while the highest decrease of IFT for Lloydminster was reported with 0.1 wt.% nanoparticles. IFT decrease was also enhanced by surfactant, and the addition of nanoparticles at 0.001 wt.% to surfactant resulted in significant decrease of IFT in most of the tested oil-nanofluid systems. The sessile drop method was used to measure the dynamic behavior of the contact angle of these oil droplets on minerals surface made of thin sections from Berea and Boise sandstone cores through a wetting test. Different nanofluid and surfactant concentrations were tested for the optimization of changes in wettability, which is a critical phase in assessing the behavior of nanofluids for optimal EOR with the selected crude oils.