B13F-0690
Interannual variability of terrestrial NEP and its attributions to carbon uptake amplitude and period

Monday, 14 December 2015
Poster Hall (Moscone South)
Shuli Niu, IGSNRR Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China
Abstract:
Earth system exhibits strong interannual variability (IAV) in the global carbon cycle as reflected in the year-to-year anomalies of the atmospheric CO2 concentration. Although various analyses suggested that land ecosystems contribute mostly to the IAV of atmospheric CO2 concentration, processes leading to the IAV in the terrestrial carbon (C) cycle are far from clear and hinder our effort in predicting the IAV of global C cycle. Previous studies on IAV of global C cycle have focused on the regulation of climatic variables in tropical or semiarid areas, but generated inconsistent conclusions. Using long-term eddy-flux measurements of net ecosystem production (NEP), atmospheric CO2 inversion NEP, and the MODIS-derived gross primary production (GPP), we demonstrate that seasonal carbon uptake amplitude (CUA) and period (CUP) are two key processes that control the IAV in the terrestrial C cycle. The two processes together explain 78% of the variations in the IAV in eddy covariance NEP, 70% in global atmospheric inversed NEP, and 53% in the IAV of GPP. Moreover, the three lines of evidence consistently show that variability in CUA is much more important than that of CUP in determining the variation of NEP at most eddy-flux sites, and most grids of global NEP and GPP. Our results suggest that the maximum carbon uptake potential in the peak-growing season is a determinant process of global C cycle internnual variability and carbon uptake period may play less important role than previous expectations. This study uncovers the most parsimonious, proximate processes underlying the IAV in global C cycle of the Earth system. Future research is needed to identify how climate factors affect the IAV in terrestrial C cycle through their influence on CUA and CUP.