T23D-2995
Frictional properties of Alpine Fault gouge in high-velocity shear experiments

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Chance Morgan and Zeev Reches, University of Oklahoma Norman Campus, Norman, OK, United States
Abstract:
The Alpine Fault, New Zealand, is a plate boundary with slip rate of ~ 37 mm/yr, with major historic seismic events. The Deep Fault Drilling Program (DFDP) into the Alpine Fault had two phases in 2011 and 2014, with main objectives of fault-zone sampling and borehole instrumentations. As complementary work to the drilling, we analyze the frictional properties of the Alpine Fault gauge on samples collected at three field exposures (Waikukupa, Cataclasite, and Gaunt) at distances up to 70 km away from DFDP-2. The bulk samples (1-3 kg) were first manually disintegrated without shear, and then sieved to the 250-350 micron fraction. The gouge was sheared in a Confined Rotary Cell (CROC) in the natural, moisture conditions, at slip-velocity range of 0.01 m/s to 0.5 m/s (constant and stepped) with a constant normal stress of 2-3 MPa. Runs included monitoring the CO2 and H2O emission, in addition to the standard mechanical parameters.

The preliminary results show an initial friction coefficient ~0.6. Initial slip at low velocities (0.01 m/s) display gentle velocity strengthening, that changed to a drastic weakening (~50%) at velocity of 0.5 m/s. This weakening was associated with intense slip localization along a hard, dark slip surface within the gouge zone. After the establishment of this slip surface, the low friction remains for the following low slip-velocity steps.

Future work will include: (1) systematic investigation of the dynamic friction dependence on the slip-velocity and slip-distance; (2) analysis of the relations between friction, mineralogy and the release of CO2/H2O; and (3) application of the experimental results to characterize natural fault behavior.