B21G-0560
Spatiotemporal pattern of vegetation remote sensing phenology and its response to climatic factors on the Qinghai-Tibet Plateau

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Shuai An1, Xiaoqiu Chen1 and The Peking University Phenology Research Team, (1)Peking University, Beijing, China
Abstract:
Based on the MODIS MCD12Q2 remote sensing phenology product, we analyzed spatiotemporal variations of vegetation green-up, maturity, senescence and brown-off dates, and their relation to spatiotemporal patterns of air temperature and precipitation on the Qinghai-Tibet Plateau (QTP). From 2001 to 2012, phenological time series at about 11.7%~15.1% pixels indicate significant linear trends (P<0.1) with strong spatial consistency. Namely, pixels with significant phenological advancement and growing season lengthening are mainly distributed in the middle and eastern parts of the QTP, while pixels with significant phenological delay and growing season shortening are mainly distributed in the western and southern parts as well as the eastern edge of the QTP. Similar spatial patterns for positive and negative linear trends of the minimum and maximum EVI, and the time-integrated EVI during the growing season were detected in the above two regions, respectively. With regard to climatic factors, mean annual temperature shows an increased trend over the QTP except for the eastern edge, whereas annual precipitation displays an increased trend in the middle and eastern parts but a decreased trend in the western and southern parts as well as the eastern edge of the QTP. These findings suggest that phenological advancement, growing season lengthening, and vegetation activity enhancement in the middle and eastern parts might be attributed to coincident temperature and precipitation increase. By contrast, phenological delay, growing season shortening, and vegetation activity reduction in the western and southern parts as well as the eastern edge might be caused by opposite changes of temperature and precipitation, and strong evaporation induced water shortage. Furthermore, a partial correlation analysis indicates that green-up, maturity, and brown-off dates were influenced by preceding temperature and precipitation, while senescence date was affected by preceding precipitation.